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Abstract. Agglomerative clustering is an effective greedy way to quickly
generate graph clusterings of high modularity in a small amount of time.
In an effort to use the power offered by multi-core CPU and GPU hard-
ware to solve the clustering problem, we introduce a fine-grained shared-
memory parallel graph coarsening algorithm and use this to implement
a parallel agglomerative clustering heuristic on both the CPU and the
GPU. This heuristic is able to generate clusterings in very little time: a
modularity 0.996 clustering is obtained from a street network graph with
14 million vertices and 17 million edges in 4.6 seconds on the GPU.

1 Introduction

We present a fine-grained shared-memory parallel algorithm for graph coarsening
and apply this algorithm in the context of graph clustering to obtain a fast greedy
heuristic for maximising modularity in weighted undirected graphs. This is a
follow-up to [7], which was concerned with generating weighted graph matchings
on the GPU, in an effort to use the parallel processing power offered by multi-
core CPUs and GPUs for discrete computing tasks, such as partitioning and
clustering of graphs and hypergraphs. Just as generating graph matchings, graph
coarsening is an essential aspect of both graph partitioning [4,8,11] and multi-
level clustering [21] and therefore forms a logical continuation of the research
done in [7].

Our contribution is a parallel greedy clustering algorithm, that scales well
with the number of available processor cores, and generates clusterings of reason-
able quality in very little time. We have tested this algorithm, see Sec. 5, against
a large set of clustering problems, all part of the 10th DIMACS challenge on
graph partitioning and clustering [1], such that the performance of our algo-
rithm can directly be compared with the state-of-the-art clustering algorithms
participating in this challenge.

An undirected graph G is a pair (V,E), with vertices V , and edges E that
are of the form {u, v} for u, v ∈ V with possibly u = v. Edges can be provided
with weights ω : E → R>0, in which case we call G a weighted undirected graph.
For vertices v ∈ V , we denote the set of all of v’s neighbours and v’s degree by

Vv := {u ∈ V | {u, v} ∈ E} \ {v} and deg(v) := |Vv|.



A matching of G = (V,E) is a subset M ⊆ E of the edges of G, satisfying
that any two edges in the matching are disjoint. We call a matching M maxi-
mal if there does not exist a matching M ′ of G with M ( M ′ and we call it
perfect if 2 |M | = |V |. If G = (V,E, ω) is weighted, then the weight of a match-
ing M of G is defined as the sum of the weights of all edges in the matching:
ω(M) :=

∑
e∈M ω(e). A matching M of G which satisfies ω(M) ≥ ω(M ′) for

every matching M ′ of G is called a maximum-weight matching.
Clustering is concerned with partitioning the vertices of a given graph into

sets consisting of vertices related to each other, e.g. to isolate communities in
graphs representing large social networks [2,13]. Formally, a clustering of an
undirected graph G is a collection C of subsets of V , where elements C ∈ C are
called clusters, that forms a partition of G’s vertices, i.e.

V =
⋃

C∈C
C, as a disjoint union.

Note that the number of clusters is not fixed beforehand, and that there can be
a single large cluster, or as many clusters as there are vertices, or any number
of clusters in between. A quality measure for clusterings, modularity, was intro-
duced in [15], which we will use to judge the quality of the generated clusterings.

Let G = (V,E, ω) be a weighted undirected graph. We define the weight ζ(v)
of a vertex v ∈ V in terms of the weights of the edges incident to this vertex as

ζ(v) :=


∑

{u,v}∈E

ω({u, v}) {v, v} /∈ E,∑
{u,v}∈E

u 6=v

ω({u, v}) + 2 ω({v, v}) {v, v} ∈ E. (1)

Then, the modularity, cf. [1], of a clustering C of G is defined by

mod(C) :=

∑
C∈C

∑
{u,v}∈E

u,v∈C

ω({u, v})

∑
e∈E

ω(e)
−

∑
C∈C

(∑
v∈C

ζ(v)
)2

4
(∑

e∈E

ω(e)
)2 , (2)

which is bounded by − 1
2 ≤ mod(C) ≤ 1 (see the appendix).

Finding a clustering C which maximises mod(C) is an NP-complete problem,
i.e. ascertaining whether there exists a clustering that has at least a fixed mod-
ularity is strongly NP-complete [3, Thm. 4.4]. Hence, to find clusterings that
have maximum modularity in reasonable time, we need to resort to heuristic
algorithms. Many different clustering heuristics have been developed, for which
we would like to refer the reader to the overview in [18, Sec. 5] and the references
contained therein: there are heuristics based on spectral methods, maximum flow,
graph bisection, betweenness, Markov chains, and random walks. The clustering
method we present belongs to the category of bottom-up greedy agglomerative
heuristics [2,14,16,21]. A massively parallel distributed-memory implementation
of agglomerative clustering is provided in [17].
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2 Clustering

We will now rewrite eq. (2) to a more convenient form. Let C ∈ C be a cluster
and define the weight of a cluster as ζ(C) :=

∑
v∈C ζ(v), the set of all internal

edges as int(C) := {{u, v} ∈ E | u, v ∈ C}, the set of all external edges as
ext(C) := {{u, v} ∈ E | u ∈ C, v /∈ C}, and for another cluster C ′ ∈ C, the set
of all cut edges between C and C ′ as cut(C,C ′) := {{u, v} ∈ E | u ∈ C, v ∈ C ′}.
Let furthermore Ω :=

∑
e∈E ω(e) be the sum of all edge weights.

With these definitions, we can reformulate eq. (2) as (see the appendix):

mod(C) =
1

4 Ω2

∑
C∈C

ζ(C) (2 Ω − ζ(C))− 2 Ω

∑
C′∈C
C′ 6=C

ω(cut(C,C ′))


 . (3)

This way of looking at the modularity is useful for reformulating the agglomer-
ative heuristic in terms of graph coarsening, as we will see in Sec. 2.1.

For this purpose, we also need to determine what effect the merging of two
clusters has on the clustering’s modularity. Let C be a clustering and C,C ′ ∈ C.
If we merge C and C ′ into one cluster C ∪ C ′, then the clustering C′ := (C \
{C,C ′}) ∪ {C ∪ C ′} we obtain, has modularity (see the appendix)

mod(C′) = mod(C) +
1

2 Ω2

(
2 Ω ω(cut(C,C ′))− ζ(C) ζ(C ′)

)
, (4)

and the new cluster has weight

ζ(C ∪ C ′) =
∑
v∈C

ζ(v) +
∑
v∈C′

ζ(v) = ζ(C) + ζ(C ′). (5)

2.1 Agglomerative heuristic

Eq. (3), eq. (4), and eq. (5) suggest an agglomerative heuristic to generate a
clustering [14,17,21]. Let G = (V,E, ω, ζ) be a weighted undirected graph for
which we want to calculate a clustering C of high modularity, provided with
edge weights ω and vertex weights ζ as defined by eq. (1).

We start out with a clustering where each vertex of the original graph is
a separate cluster, and then progressively merge these clusters to increase the
modularity of the clustering. This process is illustrated in Fig. 1. The decision
which pairs of clusters to merge is based on eq. (4): we generate a weighted
matching in the graph with as vertices all the current clusters and as edges the
sets {C,C ′} for which cut(C,C ′) 6= ∅. The weight of such an edge {C,C ′} is then
given by eq. (4), such that a maximum-weight matching will result in pairwise
mergings of clusters for which the increase of the modularity is maximal.

We do this formally by, starting with G, constructing a sequence of weighted
graphs Gi = (V i, Ei, ωi, ζi) with surjective maps πi : V i → V i+1,

G = G0 π0

→ G1 π1

→ G2 π2

→ . . .
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(a) G0 (b) G11 (c) G21

(d) G26 (e) G33 (f) Best clustering (G21).

Fig. 1. Clustering of netherlands into 506 clusters with modularity 0.995.

These graphs Gi correspond to clusterings Ci for G in the following way:

Ci := {{v ∈ V | (πi−1 ◦ · · · ◦ π0)(v) = u} | u ∈ V i}, i = 0, 1, 2, . . .

Each vertex of the graph Gi will correspond to precisely one cluster in Ci: all
vertices of G that were merged together into a single vertex in Gi via π0, . . . ,
πi−1, are considered as a single cluster. (In particular for G0 = G each vertex of
the original graph is a separate cluster.)

From eq. (5) we know that weights ζ(·) of merged clusters should be summed,
while for calculating the modularity, eq. (3), and the change in modularity due to
merging, eq. (4), we only need the total edge weight ω(cut(·, ·)) of the collection
of edges between two clusters, not of individual edges. Hence, when merging
two clusters, we can safely merge the edges in Gi that are mapped to a single
edge in Gi+1 by πi, provided we sum their edge weights. This means that the
merging of clusters in Gi to obtain Gi+1 corresponds precisely to coarsening the
graph Gi to Gi+1. Furthermore, weighted matching in the graph of all current
clusters corresponds to a weighted matching in Gi where we consider edges
{ui, vi} ∈ Ei to have weight 2 Ω ωi({ui, vi})− ζ(ui) ζ(vi) during matching. This
entire procedure is outlined in Alg. 1, where we use a map µ : V → N to indicate
matchings M ⊆ E by letting µ(u) = µ(v) ⇐⇒ {u, v} ∈M for vertices u, v ∈ V .
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Algorithm 1 Agglomerative clustering heuristic for a weighted undirected graph
G = (V,E, ω, ζ) with ζ given by eq. (1). Produces a clustering C of G.
1: modbest ← −∞
2: G0 = (V 0, E0, ω0, ζ0)← G
3: i← 0
4: C0 ← {{v} | v ∈ V }
5: while |V i| > 1 do
6: if mod(G, Ci) ≥ modbest then
7: modbest ← mod(G, Ci)
8: Cbest ← Ci

9: µ←match clusters(Gi)
10: (πi, Gi+1)← coarsen(Gi, µ)
11: Ci+1 ← {{v ∈ V | (πi ◦ · · · ◦ π0)(v) = u} | u ∈ V i+1}
12: i← i + 1
13: return Cbest

3 Graph coarsening

Graph coarsening is the merging of vertices in a graph to obtain a coarser version
of the graph. Doing this recursively, we obtain a sequence of increasingly coarser
approximations of the original graph. Such a multilevel view of the graph is
useful for graph partitioning [4,8,11], but can also be used for clustering [21].

Let G = (V,E, ω, ζ) be an undirected graph with edge weights ω and vertex
weights ζ. A coarsening of G is a map π : V → V ′ together with a graph
G′ = (V ′, E′, ω′, ζ ′) satisfying the following properties:

1. π(V ) = V ′,
2. π(E) = {{π(u), π(v)} | {u, v} ∈ E} = E′,
3. for v′ ∈ V ′,

ζ ′(v′) =
∑
v∈V

π(v)=v′

ζ(v), (6)

4. and for e′ ∈ E′,
ω′(e′) =

∑
{u,v}∈E

{π(u),π(v)}=e′

ω({u, v}). (7)

Let µ : V → N be a map indicating the desired coarsening, such that vertices
u and v should be merged into a single vertex precisely when µ(u) = µ(v). Then
we call a coarsening π compatible with µ if π(u) = π(v) if and only if µ(u) = µ(v)
for all u, v ∈ V . The task of the coarsening algorithm is, given G and µ, to
generate a graph coarsening π, G′ that is compatible with µ.

As noted at the end of Sec. 2.1, the map µ can correspond to a matching M ,
by letting µ(u) = µ(v) if and only if the edge {u, v} ∈M . This ensures that we
do not coarsen the graph too aggressively, only permitting a vertex to be merged
with at most one other vertex during coarsening. Such a coarsening approach is
also used in hypergraph partitioning [19]. For our coarsening algorithm however,
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it is not required that µ is derived from a matching: any map µ : V → N is
permitted.

3.1 Star-like graphs

The reason for permitting a general µ (i.e. where more than two vertices are
contracted to a single vertex during coarsening), instead of a map µ arising
from graph matchings is that the recursive coarsening process can get stuck on
star-like graphs [5, Sec. 4.3].

(a) (b) (c) (d)

Fig. 2. Merging vertices in star-like graphs: by matching in (a), by merging vertices
with the same neighbours in (b), and by merging more than two vertices in (c). In (d)
we see a star-like graph with a centre clique of 3 vertices and 4 satellites.

In Fig. 2(a), we see a star graph in which a maximum matching is indicated.
Coarsening this graph by matching the two matched vertices will yield a graph
with only one vertex less. In general, with a k-pointed star, coarsening by match-
ing will reduce the total number of vertices from k+1 to k, requiring k coarsening
steps to reduce the star to a single vertex. This is slow compared to a graph for
which we can find a perfect matching at each step of the coarsening, where the
total number of vertices is halved at each step and we require only log2(k) coars-
ening steps to reduce the graph to a single vertex. Hence, star graphs increase
the number of coarsening iterations at line 5 of Alg. 1 we need to perform, which
increases running time and has an adverse effect on parallelisability, because of
the few matches that can actually be made in each iteration.

A way to remedy this problem is to identify vertices with the same neighbours
and match these pairwise, see Fig. 2(b) [6,9]. When maximising clustering mod-
ularity however, this is not a good idea: for clusters C,C ′ ∈ C without any edges
between them, cut(C,C ′) = ∅, merging C and C ′ will change the modularity by
−1

2 Ω2 ζ(C) ζ(C ′) ≤ 0.
Because of this, we will use the strategy from Fig. 2(c), and merge multiple

outlying vertices, referred to as satellites from now on, to the centre of the star
simultaneously. To do so, however, we need to be able to identify star centres
and satellites in the graph.

As the defining characteristic of the centre of a star is its high degree, we
will use the vertex degrees to measure to what extent a vertex is a centre or a
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satellite. We propose, for vertices v ∈ V , to let

cp(v) :=
deg(v)2∑

u∈Vv

deg(u)
, (8)

be the centre potential of v. Note that for satellites the centre potential will
be small, because a satellite’s degree is low, while the centre to which it is
connected has a high degree. On the other hand, a star centre will have a high
centre potential because of its high degree. Let us make this a little more precise.

For a regular graph where deg(v) = k for all v ∈ V , the centre potential
will equal cp(v) = k2/k2 = 1 for all vertices v ∈ V . Now consider a star-like
graph, consisting of a clique of l vertices in the centre which are surrounded by
k satellites that are connected to every vertex in the clique, but not to other
satellites (Fig. 2(d) has l = 3 and k = 4), with 0 < l < k. In such a graph,
deg(v) = l for satellites v and deg(u) = l − 1 + k for vertices u in the centre
clique. Hence, for satellites v

cp(v) =
l2

l (l − 1 + k)
≤ l

l − 1 + l + 1
=

1
2
,

while for centre vertices u

cp(u) =
(l − 1 + k)2

(l − 1) (l − 1 + k) + k l
= 1 +

(
k − 1

2 l − 1 + (l−1)2

k

)
≥ 4

3
.

If we fix l > 0 and let the number of satellites k →∞, we see that

cp(v)→ 0 and cp(u)→∞.

Hence, the centre potential seems to be a good indicator for determining
whether vertices v are satellites, cp(v) ≤ 1

2 , or centres, cp(v) ≥ 4
3 .

In Alg. 1, we will therefore, after line 9, use cp(v) to identify all satellites in
the graph and merge these with the neighbouring non-satellite vertex that will
yield the highest increase of modularity as indicated by eq. (4). This will both
provide greedy modularity maximisation, and stop star-like graphs from slowing
down the algorithm.

4 Parallel implementation

To make the description of the algorithm more explicit, we will need to deviate
from some of the graph definitions of the introduction. First of all, we consider
arrays in memory as ordered lists, and suppose that the vertices of the graph
G = (V,E, ω, ζ) to be coarsened are given by V = (1, 2, . . . , |V |). We index such
lists with parenthesis, e.g. V (2) = 2, and denote their length by |V |. Instead of
storing the edges E and edge weights ω of a graph explicitly, we will store for
each vertex v ∈ V the set of all its neighbours Vv, and include the edge weights
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ω in this list. We will refer to these sets as extended neighbour lists and denote
them by V ω

v for v ∈ V .
Let us consider a small example: a graph with 3 vertices and edges {1, 2}

and {1, 3} with edge weights ω({1, 2}) = 4 and ω({1, 3}) = 5. Then for the
parallel coarsening algorithm we consider this graph as V = (1, 2, 3), together
with V ω

1 = ((2, 4), (3, 5)) (since there are two edges originating from vertex 1, one
going to vertex 2, and one going to vertex 3), V ω

2 = ((1, 4)) (as ω({1, 2}) = 4),
and V ω

3 = ((1, 5)) (as ω({1, 3}) = 5).
In memory, such neighbour lists are stored as an array of indices and weights

(in the small example, ((2, 4), (3, 5), (1, 4), (1, 5))), with for each vertex a range
in this array (in the small example range (1, 2) for vertex 1, (3, 3) for 2, and (4, 4)
for 3). Note that we can extract all edges together with their weights ω directly
from the extended neighbour lists. Hence, (V,E, ω, ζ) and (V, {V ω

v | v ∈ V }, ζ)
are equivalent descriptions of G.

Algorithm 2 Parallel coarsening algorithm on the GPU, given a graph G with
V = (1, 2, . . . , |V |) and a map µ : V → N, this algorithm creates a graph
coarsening π, G′ compatible with µ.
1: ρ← V
2: (ρ, µ)← parallel sort by key(ρ, µ)
3: µ← parallel adjacent not equal(µ)
4: π−1 ← parallel copy index if nonzero(µ)
5: V ′ ← (1, 2, . . . , |π−1|)
6: append(π−1, |V |+ 1)
7: µ← parallel inclusive scan(µ)
8: π ← parallel scatter(ρ, µ)
9: for v′ ∈ V ′ parallel do {Sum vertex weights.}

10: ζ′(v′)← 0
11: for i = π−1(v′) to π−1(v′ + 1)− 1 do
12: ζ′(v′)← ζ′(v′) + ζ(ρ(i))
13: for v′ ∈ V ′ parallel do {Copy neighbours.}
14: V ′ω′

v′ ← ∅
15: for i = π−1(v′) to π−1(v′ + 1)− 1 do
16: for (u, ω) ∈ V ω

ρ(i) do

17: append(V ′ω′
v′ , (π(u), ω))

18: for v′ ∈ V ′ parallel do {Compress neighbours.}
19: V ′ω′

v′ ← compress neighbours(V ′ω′
v′ )

We will now discuss the parallel coarsening algorithm described by Alg. 2,
in which the parallel * functions are slight adaptations of those available in
the Thrust template library [10]. The for . . . parallel do construct indicates a
for-loop of which each iteration can be executed in parallel, independent of all
other iterations.

We start with an undirected weighted graph G with vertices V = (1, 2, . . . , |V |),
vertex weights ζ, and edges E with edge weights ω encoded in the extended
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neighbour lists as discussed above. A given map µ : V → N indicates which
vertices should be merged to form the coarse graph.

Alg. 2 starts by creating an ordered list ρ of all the vertices V , and sorting
ρ according to µ. The function parallel sort by key(a, b) sorts both a and b
such that i ≤ j → b(a(i)) ≤ b(a(j)) for 1 ≤ i, j ≤ |a|, and does so in parallel.
Consider for example a graph with 12 vertices and a given µ:

ρ 1 2 3 4 5 6 7 8 9 10 11 12
µ 9 2 3 22 9 9 22 2 3 3 2 4

Then applying parallel sort by key will yield

ρ 2 8 11 3 9 10 12 1 5 6 4 7
µ 2 2 2 3 3 3 4 9 9 9 22 22

We then apply the function parallel adjacent not equal(a) which sets a(1)
to 1, and for 1 < i ≤ |a| sets a(i) to 1 if a(i) 6= a(i− 1) and to 0 otherwise. This
yields

ρ 2 8 11 3 9 10 12 1 5 6 4 7
µ 1 0 0 1 0 0 1 1 0 0 1 0

Now we know where each group of vertices of G that needs to be merged to-
gether starts. We will store these numbers in the ‘inverse’ of the projection
map π that we will construct later, such that we know, for each coarse ver-
tex v′, what vertices v in the original graph are coarsened to v′. The function
parallel copy index if nonzero(a) picks out the indices 1 ≤ i ≤ |a| for which
a(i) 6= 0 and stores these consecutively in a list, in parallel.

ρ 2 8 11 3 9 10 12 1 5 6 4 7
µ 1 0 0 1 0 0 1 1 0 0 1 0
π−1 1 4 7 8 11

This gives us the number of vertices in the coarse graph as |π−1| = 5, so
V ′ = (1, 2, . . . , |π−1|). To make sure we get a valid range for the last vertex
in G′, at line 6 we append |V | + 1 to π−1. Now, we want to create the map
π : V → V ′ relating the vertices of our original graph to the vertices of the
coarse graph. We do this by re-enumerating µ using an inclusive scan. The
function parallel inclusive scan(a) keeps a running sum s initialised as 0 and
updates for 1 ≤ i ≤ |a| the value s← s + a(i), storing a(i)← s.

ρ 2 8 11 3 9 10 12 1 5 6 4 7
µ 1 1 1 2 2 2 3 4 4 4 5 5
π−1 1 4 7 8 11 13

From these lists, we can see that vertices 3, 9, 10 ∈ V are mapped to the vertex
2 ∈ V ′ (so, we should have π(3) = π(9) = π(10) = 2), and from 2 ∈ V ′ we can
recover 3, 9, 10 ∈ V by looking at values of ρ in the range π−1(2), . . . , π−1(2+1)−
1. From the construction of ρ and µ we know that we should have that π(ρ(i)) =
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µ(i) for our map π : V → V ′. Hence, we use the c = parallel scatter(a, b)
function, which sets c(a(i)) ← b(i) for 1 ≤ i ≤ |a| in parallel, to obtain π. Now
we know both how to go from the original to the coarse graph (π), and from
the coarse to the original graph (π−1 and ρ). This permits us to construct the
extended neighbour lists of the coarse graph.

Let us look at this from the perspective of a single vertex v′ ∈ V ′ in the
coarse graph. All vertices v in the fine graph that are mapped to v′ by π are
given by ρ(π−1(v′)), . . . , ρ(π−1(v′ + 1) − 1). All vertex weights (line 9) ζ(v) of
these v are summed to satisfy eq. (6). By considering all extended neighbour
lists V ω

v (line 13), we can construct the extended neighbour list V ′ω′

v′ of v′. Every
element in the neighbour list is a pair (u, ω) ∈ V ω

v . In the coarse graph, π(u)
will be a neighbour of v′ in G′, so we add (π(u), ω) to the extended neighbour
list V ′ω′

v′ of v′.
After copying all the neighbours, we compress the neighbour lists of each

vertex in the coarse graph by first sorting elements (u′, ω) ∈ V ′ω′

v′ of the extended
neighbour list by u′, and then merging ranges ((u′, ω1), (u′, ω2), . . . , (u′, ωk)) in
V ′ω′

v′ to a single element (u′, ω1 + ω2 + . . . + ωk) with compress neighbours.
This ensures that we satisfy eq. (7).

Afterwards, we have V ′, {V ′ω′

v′ | v′ ∈ V ′}, and ζ ′, together with a map
π : V → V ′ compatible with the given µ.

4.1 Parallelisation of the remainder of Alg. 1

Now that we know how to coarsen the graph in parallel in Alg. 1 by using
Alg. 2, we will also look at parallelising the other parts of the algorithm. We
generate matchings µ on the GPU using the algorithm from [7], where we perform
weighted matching with edge weight 2 Ω ω({u, v}) − ζ(u) ζ(v) (cf. eq. (4)), for
each edge {u, v} ∈ E.

Satellites can be marked and merged in parallel as described by Alg. 3,
where the matching algorithm indicates that a vertex has not been matched
to any other vertex by using a special value for µ, such that the validity of
|µ−1({µ(v)})| = 1 can be checked very quickly. Note that in this case the gain
of merging a satellite with a non-satellite as described by eq. (4) is only an
approximation, since we can merge several satellites simultaneously in parallel.

In Alg. 1 (line 11), we can also keep track of clusters in parallel. We create
a clustering map κ : V → N that indicates the cluster index of each vertex
of the original graph, such that for i = 0, 1, . . ., our clustering will be Ci =
{{v ∈ V | κi(v) = k} | k ∈ N} (i.e. vertices u and v belong to the same cluster
precisely when κi(u) = κi(v)). Initially we assign all vertices to a different cluster
by letting κ0(v) ← v for all v ∈ V . After coarsening, the clustering is then
updated at line 11 by setting κi+1(v) ← πi(κi(v)). We do this in parallel using
c← parallel gather(a, b), which sets c(i)← b(a(i)) for 1 ≤ i ≤ |b|.

Note that unlike [16,21], we do not employ a local refinement strategy such
as Kernighan–Lin [12] to improve the quality of the obtained clustering from
Alg. 1, because such an algorithm does not lend itself well to parallelisation.
This is primarily caused by the fact that exchanging a single vertex between
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Algorithm 3 Algorithm for marking and merging unmatched satellites in a
given graph G = (V,E, ω, ζ), extending a map µ : V → N.
1: for v ∈ V parallel do {Mark unmatched satellites.}
2: if |µ−1({µ(v)})| = 1 and cp(v) ≤ 1

2
then

3: σ(v)← true
4: else
5: σ(v)← false
6: for v ∈ V parallel do {Merge unmatched satellites.}
7: if σ(v) then
8: ubest ←∞
9: wbest ← −∞

10: for u ∈ Vv do
11: w ← 2 Ω ω({u, v})− ζ(u) ζ(v)
12: if w > wbest and not σ(u) then
13: wbest ← w
14: ubest ← u
15: if ubest 6=∞ then
16: µ(v)← µ(ubest)

two clusters changes the total weight of both clusters, leading to a change in the
modularity gain of all vertices in both the clusters. A parallel implementation of
the Kernighan–Lin algorithm for clustering is therefore even more difficult than
for graph partitioning [8,11], where exchanging vertices only affects the vertex’s
neighbours. Remedying this is an interesting avenue for further research.

To further improve the performance of Alg. 1, we make use of two additional
observations. We found during our clustering experiments that the modularity
would first increase as the coarsening progressed and then would decrease after a
peak value was obtained, as is also visible in [15, Fig. 6 and 9]. Hence, we stop Alg.
1 after the current modularity drops below 95% (to permit small fluctuations)
of the highest modularity encountered thus far.

The second optimisation makes use of the fact that we do not perform un-
coarsening steps in Alg. 1 (although with the data generated by Alg. 2 this is
certainly possible), which makes it unnecessary to store the entire hierarchy G0,
G1, G2, . . . in memory. Therefore, we only store two graphs, G0 and G1, and
coarsen G0 to G1 as before, but then we coarsen G1 to G0, instead of a new
graph G2, and alternate between G0 and G1 as we coarsen the graph further.

5 Results

Alg. 1 was implemented using NVIDIA’s Compute Unified Device Architecture
(CUDA) language, together with the Thrust template library [10] on the GPU
and using Intel’s Threading Building Blocks (TBB) library on the CPU. The
experiments were performed on a computer equipped with two quad-core 2.4
GHz Intel Xeon E5620 processors with hyperthreading (we use 16 threads), 24
GiB RAM, and an NVIDIA Tesla C2050 with 2687 MiB global memory. All
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source code for the algorithms, together with the scripts required to generate
the benchmark data, have been released under the GNU General Public Licence
and are freely available from http://www.staff.science.uu.nl/∼faggi101/.
It is important to note that the clustering times listed in Table 1 and Fig. 3
do include data transfer times from CPU to GPU, but not data transfer from
hard disk to CPU memory. The recorded time and modularity are averaged over
16 runs, because of the use of random numbers in the matching algorithm [7].
These are generated using the TEA-4 algorithm [20] to improve performance.

The quality of the clusterings generated by the CPU implementation is gen-
erally a little higher (e.g. eu-2005) than those generated by the GPU, because
the CPU version initially generates matchings consisting only of edges for which
the incremental term in eq. (4) is non-negative. This is done as long as the
coarsening sufficiently reduces the number of vertices, after which all edges are
considered for matching, exactly once. The GPU version always considers all
edges for matching, even if including them in the matching leads to a decrease
of modularity.
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Fig. 3. In (a), we show the clustering time required by Alg. 1 for graphs
from the 10th DIMACS challenge [1] test set (categories clustering/, streets/,
coauthor/, kronecker/, matrix/, random/, delaunay/, walshaw/, dyn-frames/, and
redistrict/), for both the CUDA and TBB implementations and show that, for large
graphs, clustering time scales almost linearly with the number of edges. In (b), we
show the parallel scaling of the TBB implementation of Alg. 1 as a function of the
number of threads, normalised to the time required by a single-threaded run for graphs
rgg n 2 k s0 with 2k vertices, from the random/ category. We compare this to ideal,
linear, scaling. The test system has 8 cores and up to 16 threads with hyperthreading.

Comparing Table 1 with modularities from [16, Table 1] for karate (0.412),
jazz (0.444), email (0.572), and PGPgiantcompo (0.880), we see that Alg. 1
generates clusterings of lesser modularity. We attribute this to the absence of
a local refinement strategy in Alg. 1, as noted in Sec. 4.1. The quality of the
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G |V | |E| mod1 t1 mod2 t2
karate 34 78 0.363 0.032 0.383 0.003
jazz 198 2,742 0.314 0.045 0.369 0.009
email 1,133 5,451 0.440 0.073 0.473 0.016
PGPgiantcompo 10,680 24,316 0.809 0.088 0.841 0.029
cond-mat 16,726 47,594 0.788 0.113 0.798 0.053
as-22july06 22,963 48,436 0.607 0.182 0.630 0.029
cond-mat-2003 31,163 120,029 0.674 0.190 0.689 0.072
astro-ph 16,706 121,251 0.588 0.214 0.610 0.059
cond-mat-2005 40,421 175,691 0.624 0.245 0.640 0.085
preferentialAttachment 100,000 499,985 0.214 1.208 0.216 0.211
smallworld 100,000 499,998 0.636 0.471 0.663 0.157
G n pin pout 100,000 501,198 0.241 0.868 0.247 0.215
caidaRouterLevel 192,244 609,066 0.768 0.510 0.791 0.180
cnr-2000 325,557 2,738,969 0.828 2.126 0.904 0.376
in-2004 1,382,908 13,591,473 0.946 4.460 0.974 1.849
eu-2005 862,664 16,138,468 0.816 8.992 0.889 1.950
road central 14,081,816 16,933,413 0.996 4.566 0.996 13.738
road usa 23,947,347 28,854,312 - -.- 0.997 21.695
uk-2002 18,520,486 261,787,258 - -.- 0.974 31.008

luxembourg.osm 114,599 119,666 0.986 0.112 0.987 0.117
belgium.osm 1,441,295 1,549,970 0.992 0.433 0.993 1.136
netherlands.osm 2,216,688 2,441,238 0.994 0.591 0.995 1.791
italy.osm 6,686,493 7,013,978 0.997 1.530 0.997 5.637
great-britain.osm 7,733,822 8,156,517 0.997 1.810 0.997 6.267
germany.osm 11,548,845 12,369,181 0.997 2.815 0.997 10.096
asia.osm 11,950,757 12,711,603 0.998 2.655 0.998 10.332
europe.osm 50,912,018 54,054,660 - -.- 0.999 49.087

coAuthorsCiteseer 227,320 814,134 0.837 0.417 0.847 0.211
coAuthorsDBLP 299,067 977,676 0.748 0.598 0.760 0.270
citationCiteseer 268,495 1,156,647 0.643 0.909 0.683 0.307
coPapersDBLP 540,486 15,245,729 0.640 6.565 0.667 2.337
coPapersCiteseer 434,102 16,036,720 0.746 6.595 0.775 2.347

kron g500-simple-logn16 65,536 2,456,071 0.030 3.191 0.031 0.504
kron g500-simple-logn17 131,072 5,113,985 0.027 6.974 0.028 1.220
kron g500-simple-logn18 262,144 10,582,686 0.025 14.714 0.025 2.808
kron g500-simple-logn19 524,288 21,780,787 0.023 28.904 0.023 6.442
kron g500-simple-logn20 1,048,576 44,619,402 - -.- 0.022 14.528
kron g500-simple-logn21 2,097,152 91,040,932 - -.- 0.020 31.584

ldoor 952,203 22,785,136 0.945 6.772 0.949 3.019
audikw1 943,695 38,354,076 - -.- 0.858 5.163
cage15 5,154,859 47,022,346 - -.- 0.680 13.872

Table 1. For graphs G = (V, E), this table lists the average modularities mod1,2, eq.
(2), of clusterings of G generated in an average time of t1,2 seconds by the CUDA1

and TBB2 implementations of Alg. 1. A ‘-’ indicates that the GPU ran out of memory.
Results are averaged over 16 runs. Top to bottom, this table lists graphs from the
clustering/, streets/, coauthor/, kronecker/, and matrix/ categories of the 10th
DIMACS challenge [1].
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clusterings of irregular graphs from the kronecker/ categories is an order of
magnitude smaller than those of graphs from other categories. We are uncertain
about what causes this behaviour.

Alg. 1 is fast: for the road central graph with 14 million vertices and 17 mil-
lion edges, the GPU generates a clustering with modularity 0.996 in 4.6 seconds,
while for uk-2002, with 18 million vertices and 262 million edges, the CPU gener-
ates a clustering with modularity 0.974 in 31 seconds. In particular, for clustering
of nearly regular graphs (i.e. where the ratio

(
maxv∈V deg(v)

)
/
(
minu∈V deg(u)

)
is small) such as street networks, the high bandwidth of the GPU enables us to
find high-quality clusterings in very little time (Table 1). Furthermore, Fig. 3(a)
suggests that in practice, Alg. 1 scales linearly with the number of edges of the
graph, while Fig. 3(b) shows that the parallel performance of the algorithm scales
reasonably with the number of available cores, increasingly so as the size of the
graph increases. Note that with dual quad-core processors, we have eight physi-
cal cores available, which explains the smaller increase in performance when the
number of threads is extended beyond eight via hyperthreading.

From Fig. 3(a), we see that while the GPU performs well for large, |E| ≥ 106,
nearly regular graphs, the CPU handles small and irregular graphs better. This
can be explained by the GPU setup time and CPU to GPU data transfer time
that become dominant for small graphs, and by the fact that for large irregular
graphs, vertices with a higher-than-average degree keep one of the threads occu-
pied, while the threads treating the other, low-degree, vertices are already done,
leading to a low GPU occupancy.

6 Conclusion

In this paper we have presented a fine-grained shared-memory parallel algo-
rithm for graph coarsening, Alg. 2, suitable for both multi-core CPUs and GPUs.
Through a greedy agglomerative clustering heuristic, Alg. 1, we try to find graph
clusterings of high modularity to measure the performance of this coarsening
method. Our parallel clustering algorithm scales well for large graphs if the
number of threads is increased, Fig. 3(b), and can generate clusterings of rea-
sonable quality in very little time, requiring 4.6 seconds to generate a modularity
0.996 clustering of a graph with 14 million vertices and 17 million edges.

An interesting direction for future research would be the development of
a local refinement method for clustering, that scales well with the number of
available processing cores, and can be implemented efficiently on GPUs. This
would greatly benefit the quality of the generated clusterings.
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8 Appendix

8.1 Reformulating modularity

Our first observation is that for every cluster C ∈ C, by eq. (1):

ζ(C) = 2 ω(int(C)) + ω(ext(C)). (9)

Now we rewrite eq. (2) using the definitions we gave before:

mod(C) =

∑
C∈C

ω(int(C))

Ω
−

∑
C∈C

ζ(C)2

4 Ω2

=
1

4 Ω2

∑
C∈C

(
4 Ω ω(int(C))− ζ(C)2

)
(9)
=

1
4 Ω2

∑
C∈C

(
4 Ω

[
1
2

ζ(C)− 1
2

ω(ext(C))
]
− ζ(C)2

)
.

Therefore, we arrive at the following expression,

mod(C) =
1

4 Ω2

∑
C∈C

(
ζ(C) (2 Ω − ζ(C))− 2 Ω ω(ext(C))

)
. (10)

As
ext(C) = {{u, v} ∈ E | u ∈ C, v /∈ C} =

⋃
C′∈C
C′ 6=C

cut(C,C ′),

as a disjoint union, we find eq. (3).

8.2 Merging clusters

Let C,C ′ ∈ C be a pair of different clusters, set C ′′ = C ∪ C ′ and let C′ :=
(C \ {C,C ′}) ∪ {C ′′} be the clustering obtained by merging C and C ′.

Then ζ(C ′′) = ζ(C)+ζ(C ′) by eq. (5). Furthermore, as cut(C,C ′) = ext(C)∩
ext(C ′), we have that

ω(ext(C ′′)) = ω(ext(C)) + ω(ext(C ′))− 2 ω(cut(C,C ′)). (11)

Using this, together with eq. (10), we find that

4 Ω2(mod(C′)−mod(C)) = −ζ(C) (2 Ω − ζ(C)) + 2 Ω ω(ext(C))
− ζ(C ′) (2 Ω − ζ(C ′)) + 2 Ω ω(ext(C ′))
+ ζ(C ′′) (2 Ω − ζ(C ′′))− 2 Ω ω(ext(C ′′))

(11)
= −ζ(C) (2 Ω − ζ(C)) + 2 Ω ω(ext(C))
− ζ(C ′) (2 Ω − ζ(C ′)) + 2 Ω ω(ext(C ′))
+ (ζ(C) + ζ(C ′)) (2 Ω − (ζ(C) + ζ(C ′)))

− 2 Ω
[
ω(ext(C)) + ω(ext(C ′))− 2 ω(cut(C,C ′))

]
= 4Ω ω(cut(C,C ′))− 2 ζ(C) ζ(C ′).
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So merging clusters C and C ′ from C to obtain a clustering C′, leads to a change
in modularity given by eq. (4).

8.3 Proof of −1
2

≤ mod(C) ≤ 1

This is shown in [3, Lem. 3.1] for the unweighted case. From eq. (2),

mod(C) ≤

∑
C∈C

∑
{u,v}∈E

u,v∈C

ω({u, v})

∑
e∈E

ω(e)
− 0 ≤

∑
{u,v}∈E

u,v∈V

ω({u, v})

∑
e∈E

ω(e)
= 1,

which shows one of the inequalities. For the other inequality, note that for any
C ∈ C we have 0 ≤ ω(int(C)) ≤ Ω − ω(ext(C)), and therefore

mod(C) =
1

4 Ω2

∑
C∈C

(
4 Ω ω(int(C))− ζ(C)2

)
(9)
=

1
4 Ω2

∑
C∈C

(
4 Ω ω(int(C))− 4 ω(int(C))2 − 4 ω(int(C))ω(ext(C))

− ω(ext(C))2
)

=
1

4 Ω2

∑
C∈C

(
4 ω(int(C)) [Ω − ω(ext(C))− ω(int(C))]− ω(ext(C))2

)
≥ 1

4 Ω2

∑
C∈C

(
0− ω(ext(C))2

)
= −

∑
C∈C

(
ω(ext(C))

2 Ω

)2

.

Enumerate C = {C1, . . . , Ck} and define xi := ω(ext(Ci))
2 Ω for 1 ≤ i ≤ k to

obtain a vector x ∈ Rk. Note that 0 ≤ xi ≤ 1
2 (as 0 ≤ ω(ext(Ci)) ≤ Ω) for

1 ≤ i ≤ k, and because every external edge connects precisely two clusters, we
have

∑k
i=1 ω(ext(Ci)) ≤ 2 Ω, so

∑k
i=1 xi ≤ 1. By the above, we know that

mod(C) ≥ −‖x‖22,

hence we need to find an upper bound on ‖x‖22, for x ∈ [0, 1
2 ]k satisfying∑k

i=1 xi ≤ 1. For all k ≥ 2, this upper bound equals ‖( 1
2 , 1

2 , 0, . . . , 0)‖22 = 1
2 ,

so mod(C) ≥ − 1
2 . The proof is completed by noting that for a single cluster,

mod({V }) = 0 ≥ −1
2 .
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